AI

非监督学习

非监督学习是一种机器学习方法,不依赖于标注数据集(即没有预先定义的目标变量)。在非监督学习中,常见的任务包括聚类和降维。以下是对两类任务中常用算法的详细介绍: 聚类算法 聚类算法的目标是将数据集中的样本划分为若干个组(簇),使得同一簇内的样本具有较高的相似性,而不同簇之间的样本差异较大。 K-means 聚类 概述:K-means 是一种广泛使用的聚类算法,旨在将数据集划分成 K 个簇,每个簇通过其簇中心(质心)表示。 算法步骤: 1. 初始化:随机选择 K 个初始质心。 2. 分配簇:将每个样本分配到离它最近的质心所在的簇。 3. 更新质心:重新计算每个簇的质心,质心为簇内所有样本的平均值。 4. 重复步骤 2 和 3,直到质心不再变化或达到最大迭代次数。 优点: * 简单易懂,计算速度快。 * 对大数据集也能高效执行。 缺点: * 需要预先指定 KKK 的值。 * 对初始质心敏感,
Herbert He

监督学习

在监督学习中,常见的算法包括线性回归、逻辑回归、决策树和支持向量机。每种算法都有其独特的特点和适用场景。 1. 线性回归(Linear Regression) 概述:线性回归是一种用于回归问题的算法,它通过拟合数据来预测连续型目标变量。 基本原理: 优点: * 简单易懂,计算速度快。 * 易于解释模型参数。 缺点: * 对线性关系假设过于严格,无法处理非线性数据。 * 对异常值敏感。 注: 线性回归的线性公式 公式中的各个部分 2. 逻辑回归(Logistic Regression) 概述:逻辑回归是一种用于分类问题的算法,特别适用于二分类问题。 基本原理: 优点: * 简单易懂,计算速度快。 * 可以输出概率值,便于解释。 * 能够处理多重共线性问题。 缺点: * 只能处理线性可分的问题。 * 对异常值敏感。 注: 逻辑回归的公式 逻辑回归用于解决二分类问题,输出的是一个概率值,表示某个样本属于某个类别的概率。其核心公式是逻辑函数(也称为sigmoid函数),用于将线性组合的特征映射到概率值。 逻辑函数(
Herbert He

线性代数

矩阵 定义 矩阵是一个由行和列组成的矩形数组,用于表示线性变换或线性方程组。矩阵中的每个元素可以是实数、复数或其他数值类型。 注: 有理数:可以表示为两个整数之比的数(分数),如 1/2 或 -3。包括整数、有限小数和无限循环小数。 无理数:不能表示为两个整数之比的数。这些数的十进制表示是无限不循环小数,如 π和 √2 。 实数:包括所有有理数和无理数的数。它们可以用来描述长度、质量、时间等连续变化的量。 复数: 复数可以表示 a + bi, 其中a, b 都是实数, i 是虚数单位,满足 i² = -1 实部:复数 a+bi中的 a 称为实部。 虚部:复数 a+bi
Herbert He
Python编程

Python编程

1 Python编程环境配置 1.1 Python编程软件 推荐PyCharm Community Edition,免费版已经够用了。点击下面图片下载安装。 1.2 安装Python解释器 安装好Pycharm,再安装Python解释器。点击下面图片下载安装。 1.3 创建Python项目 打开Pycharm,点击New Project,按下图步骤设置项目。 1.4 创建第一个Python文件 2 配置好Pycharm,开始Python编程。 2.1 基本语法 2.1.1 变量声明 Python中的变量不需要声明类型,可以直接赋值(用 #进行代码注释): x = 5 # 整数 y = 3.14 # 浮点数 name = "Alice&
Herbert He